Revolutionizing Optimization and Deep Learning: A Thermodynamic Hybrid Network Inspired by the Nobel Prize in Physics 2024

Authors

  • satyanarayana s Author

DOI:

https://doi.org/10.70153/IJCMI/2024.16302

Keywords:

Thermodynamic Hybrid Network, Artificial Neural Networks (ANNs),, Hopfield Network, Restricted Boltzmann Machines (RBMs), Energy Minimization, Stochastic Exploration, Optimization, Machine Learning, Deep Learning, Quantum-Inspired Algorithms

Abstract

The 2024 Nobel Prize in Physics, awarded to John J. Hopfield and Geoffrey E. Hinton, recognized their foundational contributions to artificial neural networks (ANNs) and machine learning. This paper introduces a novel Thermodynamic Hybrid Network that merges Hopfield networks' energy minimization capabilities with the probabilistic dynamics of Restricted Boltzmann Machines (RBMs). Leveraging thermodynamic principles, this hybrid architecture addresses large-scale optimization challenges, such as the Traveling Salesman Problem and protein structure prediction, while overcoming the limitations of conventional ANNs. This approach bridges the gap between classical deterministic models and stochastic methods, opening the door to more efficient machine learning solutions across fields like computational biology, quantum computing, and materials science.

Downloads

Download data is not yet available.

Author Biography

  • satyanarayana s

    Satyanarayana S

    CEO & Chief Data Scientist

    AlgoProfessor Software Solutions

    E-Mail: ceo@algoprofessor.in

     

References

References:

W.S. McCulloch and W. Pitts, Bull. Math. Biophys. 5, 115 (1943).

D.O. Hebb, The Organization of Behavior (Wiley & Sons, New York, 1949).

F. Rosenblatt, Principles of Neurodynamics: Perceptrons and Theory of Brain Mechanisms (Spartan Book, Washington D.C., 1962).

M.L. Minsky and S.A. Papert, Perceptrons: An Introduction to Computational Geometry (MIT Press, Cambridge, 1969).

B.G. Cragg and H.N.V. Temperley, Brain 78, 304 (1955).

E.R. Caianiello, J. Theor. Biol. 2, 204 (1961).

K. Nakano, IEEE Trans., Syst., Man, Cybern. SMC-2, 380 (1972).

S.-I. Amari, IEEE Trans. Comput. C-21, 1197 (1972).

W.A. Little, Math. Biosci. 19, 101 (1974).

W.A. Little and G.L. Shaw, Math. Biosci. 39, 281 (1978).

J.J. Hopfield, Proc. Natl. Acad. Sci. USA 71, 3640 (1974).

J.J. Hopfield, Proc. Natl. Acad. Sci. USA 71, 4135 (1974).

J.J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).

D. Krotov and J.J. Hopfield, In Advances in Neural Information Processing Systems 29, 1172 (2016).

D.J. Amit, H. Gutfreund and H. Sompolinsky, Phys. Rev. A 32, 1007 (1985).

M. Mézard, G. Parisi and M. Virasoro, Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications (World Scientific, Singapore, 1987).

J.J. Hopfield, Proc. Natl. Acad. Sci. USA 81, 3088 (1984).

J.J. Hopfield and D.W. Tank, Biol. Cybern. 52, 141 (1985).

J.J. Hopfield and D.W. Tank, Science 233, 625 (1986).

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science 220, 671 (1983).

N. Mohseni, P. McMahon and T. Byrnes, Nat. Phys. Rev. 4, 363 (2022).

T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).

S.E. Fahlman, G.E. Hinton and T.J. Sejnowski, In Proceedings of the AAAI-83 Conference, pp. 109-113 (1983).

D.H. Ackley, G.E. Hinton and T.J. Sejnowski, Cogn. Sci. 9, 147 (1985).

D.E. Rumelhart, G.E. Hinton and R.J. Williams, Nature 323, 533 (1986).

P.J. Werbos, In System Modeling and Optimization, pp. 762-770 (1982).

S. Linnainmaa, Master’s thesis (in Finnish), Univ. Helsinki (1970); published in BIT 16, 146 (1976).

Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard and L.D. Jackel, Neural Comput. 1, 541 (1989).

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Proc. IEEE 86, 2278 (1998).

K. Fukushima, Biol. Cybern. 36, 193 (1980).

S. Hochreiter and J. Schmidhuber, Neural Comput. 9, 1735 (1997).

G.E. Hinton, Neural Comput. 14, 1771 (2002).

G.E. Hinton, S. Osindero and Y.-W. Teh, Neural Comput. 18, 1527 (2006).

Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle, In Advances in Neural Information Processing Systems 19, 153 (2006).

G.E. Hinton and R. Salakhutdinov, Science 313, 504 (2006).

K. Hornik, Neural Netw. 4, 251 (1991).

J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).

G. Carleo and M. Troyer, Science 355, 602 (2017).

P.M. Piaggi, J. Weis, A.Z. Panagiotopoulos, P.G. Debenedetti and R. Car, Proc. Natl. Acad. Sci. USA 119, e2207294119 (2022).

R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse and M. Bokdam, Phys. Rev. Lett. 122, 225701 (2019).

P.M. de Hijes, C. Dellago, R. Jinnouchi, B. Schmiedmayer and G. Kresse, J. Chem. Phys. 160, 114107 (2024).

S. Rasp, M.S. Pritchard and P. Gentine, Proc. Natl. Acad. Sci. USA 115, 9684 (2018).

C. Wong, Nature 628, 710 (2024).

ALEPH Collaborations, Phys. Lett B 447, 336 (1999).

ATLAS Collaboration, Phys. Lett. B 716, 1 (2012).

D0 Collaboration, Phys. Rev. Lett. 103, 092001 (2009).

IceCube Collaboration, Science 380, 1338 (2023).

K.A. Pearson, L. Palafox and C.A. Griffith, Mon. Not. R. Astron. Soc. 474, 478 (2017).

EHT Collaboration, ApJL 930, L15 (2022).

J. Jumper et al., Nature 596, 583 (2021).

K. Lång et al., Lancet Oncol. 24, 936 (2023).

V. Spieker et al., IEEE Trans. Med. Imaging 43, 846 (2024).(advanced-physicsprize20…)

Teja, P. S. S., M. Vineel, G. Manisha, and S. Satyanarayana. "Automated irrigation system using sensors and node micro controller unit." International Journal of Engineering & Technology 7, no. 1.1 (2017): 240-242.

Tayar, Yerremsetty, R. Siva Ram Prasad, and S. Satayanarayana. "An accurate classification of imbalanced streaming data using deep convolutional neural network." International Journal of Mechanical Engineering and Technology 9, no. 3 (2018): 770-783.

Kishore, G. N. V., K. P. R. Rao, D. Panthi, B. Srinuvasa Rao, and S. Satyanaraya. "Some applications via fixed point results in partially ordered S b S_b-metric spaces." Fixed Point Theory and Applications 2017 (2016): 1-14.

Ramprasad, Ch, P. L. N. Varma, N. Srinivasarao, and S. Satyanarayana. "Regular product m-polar fuzzy graphs and product m-polar fuzzy line graphs." PONTE International Journal of Science and Research 73, no. 2 (2017).

Ramprasad, Ch, N. Srinivasarao, and S. Satyanarayana. "A Study on Interval-Valued Fuzzy Graphs." Computer Science & Telecommunications 50, no. 4 (2016).

Satyanarayana, S. "Range-valued fuzzy colouring of interval-valued fuzzy graphs." Pacific Science Review A: Natural Science and Engineering 18, no. 3 (2016): 169-177.

Rao, K. P. R., G. N. V. Kishore, Kenan Tas, S. Satyanaraya, and D. Ram Prasad. "Applications and common coupled fixed point results in ordered partial metric spaces." Fixed Point Theory and Applications 2017 (2017): 1-20.

Satyanarayana, S., Thayyaba Khatoon, and NV Madhu Bindu. "Breaking Barriers in Kidney Disease Detection: Leveraging Intelligent Deep Learning and Artificial Gorilla Troops Optimizer for Accurate Prediction." International Journal of Applied and Natural Sciences 1, no. 1 (2023): 22-41.

Appalabatla, Shanmukha Priya Sreenidhi, Abothu Sharath Kumar, Adidamu Pramod Sai, Avula Sanjana, and S. Satyanarayana. "FrauDetect: Deep Learning Based Credit Card Fraudulency Detection System." (2023).

Satyanarayana, S., Yerremsetty Tayar, and R. Siva Ram Prasad. "Efficient DANNLO classifier for multi-class imbalanced data on Hadoop." International Journal of Information Technology 11 (2019): 321-329.

Bhavani, P. Durga, K. Vijay Kumar, and S. Satyanarayana. "An investiga⁃ tion on some theorems on k⁃ Path vertex cover." Global Journal of Pure and Applied Mathematics 12, no. 2 (2016): 1403-1412.

Ramprasad, Ch, N. Srinivasarao, S. Satyanarayana, and G. Srinivasarao. "Contributions on s-Edge Regular Bipolar Fuzzy Graphs." Computer Science & Telecommunications 50, no. 4 (2016).

Satyanarayana, S., T. Gopikiran, and B. Rajkumar. "Cloud Business Intelligence." (2012).

Satyanarayana, S. "Cloud computing: SAAS." Computer Sciences and Telecommunications 4 (2012): 76-79.

Rao, P. Srinivasa, and S. Satyanarayana. "Privacy preserving data publishing based on sensitivity in context of Big Data using Hive." Journal of Big Data 5 (2018): 1-20.

Sangameswar, M. V., M. Nagabhushana Rao, and S. Satyanarayana. "An algorithm for identification of natural disaster affected area." Journal of Big Data 4 (2017): 1-11.

Ramprasad, Ch, P. L. N. Varma, S. Satyanarayana, and N. Srinivasarao. "Morphism of m‐Polar Fuzzy Graph." Advances in Fuzzy Systems 2017, no. 1 (2017): 4715421.

Marrapu, Satvika, S. Satyanarayana, V. Arunkumar, and J. D. S. K. Teja. "Smart home based security system for door access control using smart phone." Int. J. Eng. Technol 7, no. 1 (2018): 249.

Rajkumar, B., T. Gopikiran, and S. Satyanarayana. "Neural network design in cloud computing." International Journal of Computer Trends and Technology 4, no. 2 (2013): 6-7.

Vaisali, G., K. Sai Bhargavi, Satish Kumar, and S. Satyanarayana. "Smart solid waste management system by IOT." International Journal of Mechanical Engineering and Technology 8, no. 12 (2017): 841-846.

Satyanarayana, S., and SaiSuman Singamsetty. "Harnessing Reinforcement Learning for Agile Portfolio Management in Nifty 50 Stock Analysis." Sparklinglight Transactions on Artificial Intelligence and Quantum Computing (STAIQC) 4, no. 1 (2024): 32-42.

Gali, Manvitha, and Aditya Mahamkali. "A Distributed Deep Meta Learning based Task Offloading Framework for Smart City Internet of Things with Edge-Cloud Computing." J. Internet Serv. Inf. Secur. 12, no. 4 (2022): 224-237.

Mahamkali, Aditya. "Health Care Internet of Things (IOT) During Pandemic–A Review." Journal of Pharmaceutical Negative Results (2022): 572-574.

Mahamkali, Aditya, Manvitha Gali, Elangovan Muniyandy, and Ajith Sundaram. "IoT-Empowered Drones: Smart Cyber security Framework with Machine Learning Perspective." In 2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS), vol. 1, pp. 1-9. IEEE, 2023.

Sharma, Aditi, Manvitha Gali, Aditya Mahamkali, K. Raghavendra Prasad, Pavitar Parkash Singh, and Amit Mittal. "IoT-enabled Secure Service-Oriented Architecture (IOT-SOA) through Blockchain." In 2023 Second International Conference On Smart Technologies For Smart Nation (SmartTechCon), pp. 264-268. IEEE, 2023

Downloads

Published

2024-10-09

How to Cite

[1]
satyanarayana s, “Revolutionizing Optimization and Deep Learning: A Thermodynamic Hybrid Network Inspired by the Nobel Prize in Physics 2024”, IJCMI, vol. 16, no. 1, pp. 3052–3065, Oct. 2024, doi: 10.70153/IJCMI/2024.16302.

Similar Articles

1-10 of 15

You may also start an advanced similarity search for this article.