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Abstract 

Artificial Intelligence (AI) systems are increasingly utilized in critical domains such as 

healthcare, finance, and governance, where transparency and accountability are essential. 

While explainable AI (XAI) research has primarily focused on model interpretability, the data 

engineering processes—including data ingestion, preprocessing, and feature engineering—

remain largely opaque, posing challenges to trust, reproducibility, and ethical compliance. To 

bridge this gap, we propose an innovative Explainable Data Engineering (XDE) framework 

that integrates explainability throughout the entire data pipeline by leveraging techniques from 

explainable machine learning, causal inference, data provenance, and symbolic reasoning. We 

validate the framework using two real-world datasets: a breast cancer diagnosis dataset and a 

financial credit scoring dataset. In the healthcare setting, combining SHAP values with feature 

lineage graphs enabled explanation of 98% of model decisions in terms of data transformations, 

while achieving a high classification accuracy of 93.5%, closely matching the traditional 

opaque pipeline. Medical experts rated the clarity of explanations highly, with an average score 

of 4.7 out of 5. For the financial dataset, the XDE pipeline successfully identified data drifts 

and anomalies overlooked by conventional methods, reducing false loan approvals by 12%. 

Narrative explanations facilitated compliance audits, enhancing stakeholder trust. Although the 

pipeline increased time-to-deployment by approximately 8%, it significantly reduced 

debugging time by 35%, improving maintainability. These results demonstrate that XDE 

effectively enhances transparency, auditability, and stakeholder confidence without sacrificing 

performance, offering a practical solution for responsible AI deployment through interpretable 

data pipelines. 
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1. Introduction 

The performance and reliability of artificial intelligence (AI) systems are profoundly 

influenced by the quality and treatment of data throughout their development lifecycle. While 

innovations in model architectures, optimization algorithms, and neural network designs often 

capture the majority of attention in AI research, it is the foundational work done at the data 

engineering level that often determines the success or failure of an AI deployment. Data 

engineering encompasses a broad range of activities, including data collection, ingestion, 

cleaning, transformation, feature engineering, and integration. These activities prepare raw data 

into a form that can be meaningfully consumed by machine learning models. Despite this 

critical role, data engineering is frequently undervalued or relegated to a background task, 

leading to practices that are undocumented, opaque, and poorly understood by downstream 

stakeholders. 

This neglect has serious implications. The lack of transparency in data engineering introduces 

significant risks at multiple levels. For instance, poorly documented data cleaning procedures 

can result in the unintentional removal of essential patterns or the retention of noisy, irrelevant 

information. Feature transformation steps, often based on assumptions that are not rigorously 

tested or explained, can introduce biases that skew model outputs. Without a clear lineage or 

rationale for these decisions, it becomes nearly impossible for regulators, auditors, or even 

other members of the data science team to trace how input data has been manipulated before 

reaching the model. This opacity undermines trust in AI systems and makes it difficult to debug 

issues, ensure fairness, and uphold ethical standards in AI deployment. 

The growing interest in explainable AI (XAI) reflects the broader societal demand for 

interpretable and trustworthy AI systems. Researchers and practitioners have developed 

various model-centric techniques to open the black box of AI, such as SHAP (SHapley 

Additive exPlanations), LIME (Local Interpretable Model-agnostic Explanations), and 

attention mechanisms in deep learning architectures. These tools provide insight into why 

models make particular predictions, helping stakeholders assess whether models are fair, 

robust, and aligned with human values. However, while these techniques illuminate the 

decision-making logic of AI models, they often do so without considering the provenance and 

transformation history of the data fed into them. As a result, a substantial part of the AI 

decision-making pipeline remains unexplained. 

In practical AI deployments, the pathway from raw data to model-ready input is rarely linear 

or simple. Data may come from multiple sources, each with its own format, quality, and 

semantics. Cleaning processes must deal with missing values, duplicates, inconsistencies, and 

outliers. Transformations may normalize, encode, aggregate, or reshape data to fit model 

requirements. Feature engineering—often seen as a craft based on domain knowledge and 

statistical intuition—introduces new representations that may enhance model performance but 

also obscure the original meaning of the data. Each of these steps involves choices that can 

significantly alter the data’s characteristics and, consequently, the model’s behaviour. Yet these 
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transformations are often implemented via scripts or automated pipelines with minimal 

documentation, leading to an accountability gap. 

This gap is particularly problematic in high-stakes domains such as healthcare, finance, 

criminal justice, and autonomous systems, where decisions made by AI can affect lives, 

livelihoods, and civil rights. In such contexts, the ability to explain how data was processed—

and why certain transformations were chosen—is not just a technical nicety but a regulatory 

and ethical necessity. Stakeholders including patients, customers, regulators, and policymakers 

demand to know not only what a model predicts, but how it came to make that prediction, and 

that begins with understanding the data pipeline. 

The principle of explainability by design must therefore extend beyond models and into data 

engineering. We propose a new framework—Explainable Data Engineering (XDE)—that 

incorporates explainability as a first-class concern throughout the data pipeline. The XDE 

framework draws on techniques from data provenance, causal inference, symbolic reasoning, 

metadata management, and human-computer interaction to provide transparency into how data 

is processed. Just as XAI techniques explain model predictions, XDE aims to explain data 

transformations. This includes documenting the rationale behind data cleaning rules, making 

transformation logic human-readable, visualizing feature lineage, and ensuring that each step 

in the pipeline can be audited, reproduced, and understood by stakeholders with varying 

technical backgrounds. 

The benefits of such a framework are multifaceted. For data scientists and engineers, XDE 

provides tools for debugging and improving the pipeline, reducing technical debt and 

enhancing collaboration across teams. For compliance and legal teams, it offers a basis for 

demonstrating regulatory compliance, such as adherence to data protection laws like GDPR or 

model transparency mandates in financial services. For domain experts and business users, it 

supports a clearer understanding of how data informs predictions, enabling more informed 

decision-making and oversight. And for society at large, it contributes to the broader goal of 

making AI systems more trustworthy, ethical, and aligned with human values. 

One of the key insights of XDE is that explainability should not be an afterthought or an 

external wrapper around opaque processes. Instead, it should be embedded into the very design 

of data pipelines. This means that tools, frameworks, and practices used in data engineering 

should be re-evaluated through the lens of interpretability. For example, ETL (Extract, 

Transform, Load) processes should not only be automated but also annotated with human-

readable justifications and linked to downstream impacts. Feature selection and construction 

should be accompanied by visualizations and narratives that clarify how features were derived 

and why they are relevant. Statistical tests and thresholds used in preprocessing should be 

documented, and their effects on data distributions should be made explicit through causal 

diagrams or summary statistics. 

The implementation of XDE requires both technical innovation and cultural change. 

Technically, it necessitates the development of new tools that can capture, store, and present 

explanations alongside data transformations. This includes provenance tracking systems, 

visualization interfaces, and libraries that integrate with existing data processing frameworks 

such as Apache Spark, Pandas, or Airflow. Culturally, it demands a shift in how organizations 

value and approach data engineering work—recognizing it not as a behind-the-scenes task but 
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as a critical component of AI development that deserves the same rigor, scrutiny, and 

transparency as model development. 

Furthermore, the advent of automated machine learning (AutoML) and data-centric AI has 

made the need for explainable data pipelines even more pressing. As more data processing and 

feature engineering tasks are handed over to automated systems, the risk of obscured logic and 

hidden biases increases. AutoML platforms, while efficient, can produce pipelines that are 

difficult to interpret or justify. Embedding XDE principles into these systems can help ensure 

that automation does not come at the cost of transparency. It also enables hybrid intelligence, 

where human oversight and machine automation work together to produce robust, 

interpretable, and high-performing AI systems. 

XDE is also essential in addressing issues of data bias and fairness. Many biases in AI systems 

originate not from the model itself but from the data and its preprocessing. For example, if a 

data cleaning step systematically removes outliers that disproportionately affect a minority 

group, or if feature construction embeds societal biases, the resulting model will likely 

perpetuate those biases. By making each data transformation explainable, XDE enables 

practitioners to identify, understand, and mitigate these biases before they reach the model 

stage. This proactive approach to fairness aligns with emerging standards and frameworks for 

responsible AI, such as the EU’s AI Act, the OECD AI Principles, and the IEEE’s Ethically 

Aligned Design. 

In addition, XDE supports better communication and collaboration between stakeholders. AI 

projects often involve a diverse set of participants, including data engineers, data scientists, 

domain experts, business leaders, and external auditors. These groups have varying levels of 

technical expertise and different information needs. By providing multi-level explanations—

ranging from detailed code annotations for engineers to high-level narratives for executives—

XDE ensures that each stakeholder can access the information they need to understand and 

trust the data pipeline. This democratization of data understanding is a crucial step toward 

inclusive and participatory AI governance. 

The concept of explainability in data engineering also aligns with broader movements in 

software development, such as DevOps and DataOps, which emphasize automation, 

monitoring, and collaboration. Just as DevOps tools support continuous integration and 

deployment (CI/CD) with traceability and logging, XDE proposes a similar infrastructure for 

data workflows—one that supports continuous documentation, validation, and explanation of 

data transformations. By integrating with existing DevOps practices, XDE can become a 

seamless part of the AI development lifecycle, rather than an additional burden. 

To realize the vision of XDE, interdisciplinary collaboration is essential. The development of 

explainable data engineering tools and practices must involve expertise from AI, human-

computer interaction, software engineering, data ethics, and regulatory policy. This 

interdisciplinary approach ensures that explanations are not only technically accurate but also 

usable, meaningful, and aligned with societal values. It also opens the door to innovation in 

interface design, natural language generation, and interactive visualization—all of which can 

enhance the accessibility of explanations. 
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2. Recent Survey 

The increasing deployment of artificial intelligence (AI) in high-stakes domains like 

healthcare, finance, and governance has intensified demands for transparency, accountability, 

and trustworthiness. While significant research effort has focused on Explainable AI (XAI) at 

the model level, the critical data engineering processes that prepare, transform, and feed data 

into these models often remain opaque. This literature survey synthesizes research from 2010-

2021, highlighting the growing recognition of this gap and the emerging approaches aimed at 

integrating explainability throughout the data pipeline, forming the foundation for Explainable 

Data Engineering (XDE). 

A central critique emerging from the literature is the systemic neglect of data work compared 

to model development. Sambasivan et al. powerfully illustrate this imbalance, documenting 

how the prioritization of model work over data work leads to "data cascades" – compounding 

negative events triggered by underlying data issues – that compromise AI system performance 

and fairness in real-world deployments [16]. This neglect manifests as hidden "technical debt" 

within machine learning systems, as identified by Sculley et al., where data dependencies, 

configuration issues, and pipeline complexity create significant maintenance burdens and 

obscure the true path from raw data to model input [18]. Kandel et al. further underscore the 

challenges in their early work on data wrangling, highlighting the lack of transparency and 

reproducibility in data transformation processes as a major barrier to effective data science 

[10]. The consequence, as explored by Siddiqui et al., is that the impact of data quality decisions 

on downstream machine learning tasks is poorly understood and rarely tracked systematically 

[19]. 

This opacity in the data pipeline creates significant risks, particularly concerning bias and 

fairness. Barocas, Hardt, and Narayanan provide a foundational analysis, demonstrating how 

biases originating in the data collection, cleaning, and feature engineering stages propagate 

through pipelines and are amplified by models, often in ways difficult to detect without clear 

lineage [1]. Gebru et al. address this problem proactively by proposing "Datasheets for 

Datasets," advocating for standardized documentation that captures the provenance, collection 

methods, preprocessing steps, and known biases of datasets, thereby increasing transparency 

at the data source level [5]. Holland et al. offer a complementary approach with the "Dataset 

Nutrition Label," a framework designed to provide a standardized, assessment-driven report on 

dataset characteristics crucial for understanding potential biases and suitability for a task [8]. 

The challenge of mitigating bias is further complicated by the tension between explainability 

and privacy regulations. Kenthapadi et al. examine how data protection mechanisms, while 

essential, can obscure data distributions and relationships, making it harder to audit pipelines 

for fairness and explain model behavior [11]. 

The limitations of purely model-centric XAI techniques in addressing these data-centric 

challenges are increasingly recognized. Hind critiques the state of XAI, arguing that 

explanations focusing solely on model internals provide an incomplete picture and fail to 

account for the substantial transformations and potential biases introduced upstream in the data 

pipeline [7]. Doshi-Velez and Kim call for a more rigorous science of interpretable machine 

learning, implicitly acknowledging that interpretability must encompass the entire process, 

including data preparation, not just the final model [4]. Popular model explanation techniques 

like LIME, introduced by Ribeiro et al., are valuable for understanding model predictions 
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locally but offer no insight into how the features presented to the model were derived or 

whether those derivations themselves are sound or biased [15]. Similarly, Lakkaraju et al.'s 

work on "Interpretable Decision Sets" focuses on creating transparent rule-based models but 

does not inherently explain the provenance or transformations of the data used to learn those 

rules [12]. Wachter, Mittelstadt, and Russell's exploration of counterfactual explanations 

provides a powerful tool for understanding model decisions but, again, operates on the features 

presented to the model, leaving the data engineering steps that created those features 

unexplored [20]. 

To address the transparency gap in data pipelines, researchers are exploring various technical 

and methodological approaches. Data provenance and lineage tracking are fundamental 

prerequisites for XDE. Pääkkönen and Pakkala, in their reference architecture for big data 

systems, highlight the importance of data lineage as a core component for understanding data 

flow and transformation within complex architectures [14]. Bose and Frew survey lineage 

retrieval techniques specifically for scientific data processing, emphasizing their role in 

reproducibility and debugging, principles directly applicable to AI data workflows [3]. Schelter 

et al. address the critical issue of data quality within pipelines, proposing methods for 

automating large-scale data quality verification, a necessary step for ensuring reliable inputs 

and providing explanations based on verified data properties [17]. Bhatt et al. move beyond the 

lab to study explainable ML in real-world deployment, revealing practical challenges and 

stakeholder needs that underscore the importance of explanations spanning the entire 

workflow, including data aspects, to foster trust and adoption [2]. 

Feature engineering, a crucial yet often opaque step, is receiving specific attention in the 

context of explainability. Hooker and Mentch critically analyze common feature importance 

techniques like permutation, exposing their limitations and potential to produce misleading 

results, particularly when features are correlated or the data pipeline is complex [9]. They 

advocate for more interpretable alternatives. Medisetty explores the automation of data flows 

for AI systems, arguing that advanced engineering practices are essential for building robust 

and traceable pipelines, where the rationale behind feature selection and transformation can be 

captured and reviewed [6]. Shylaja investigates self-learning data models that continuously 

adapt, highlighting the need for inherent explainability within the adaptation mechanisms to 

understand how evolving data representations impact model behavior [3]. This aligns with the 

broader shift towards "data-centric AI," where the focus intensifies on the quality, 

management, and processing of data itself. 

The pursuit of causal understanding offers another pathway to explainability. Miao et al. 

discuss "causal representation learning," aiming to discover latent features that reflect the 

underlying causal structure of the data [13]. Integrating such causal perspectives into data 

engineering could provide more robust explanations for why certain transformations are 

necessary and how they relate to the real-world phenomena being modeled, moving beyond 

purely correlational patterns. This is particularly important for fairness, as understanding causal 

pathways can help distinguish legitimate correlations from discriminatory biases introduced 

during data handling. 

Governance and compliance are powerful drivers for XDE. Singamsetty explicitly links AI-

based data governance to trust and compliance, arguing that complex data ecosystems require 

intelligent governance mechanisms that inherently incorporate explainability of data lineage 
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and transformations to meet regulatory demands (e.g., GDPR right to explanation) and ethical 

standards [9]. The legal perspective provided by Wachter, Mittelstadt, and Russell reinforces 

this, suggesting that explanations meaningful for compliance and contestability likely need to 

encompass the data pipeline, not just the model [20]. Effective governance requires tools for 

auditing. Gebru et al.'s "Datasheets" [5] and Holland et al.'s "Nutrition Labels" [8] provide 

starting points for dataset auditing, while Schelter et al.'s automated quality verification [17] 

offers tools for auditing pipeline integrity. 

Despite these advances, significant challenges remain. Integrating diverse XDE techniques – 

provenance tracking, quality validation, explainable feature engineering, causal analysis, 

documentation standards – into cohesive, scalable frameworks accessible to practitioners is 

complex. Hind points out the usability gap in XAI explanations [7], a challenge equally 

relevant to XDE: explanations must be tailored to different stakeholders (data engineers, data 

scientists, auditors, domain experts, end-users). Furthermore, as Medisetty [6] and Shylaja [3] 

explore with automated data flows and self-adapting models, integrating explainability into 

increasingly automated and dynamic pipeline components requires innovative approaches. 

Balancing the computational overhead of comprehensive provenance and explanation 

generation with performance requirements is another practical hurdle. Sculley et al.'s concept 

of technical debt [18] reminds us that neglecting these aspects early leads to costly problems 

later. 

3. Proposed Methodology 

The Explainable Data Engineering (XDE) framework, as illustrated in Figure 1, consists of five 

systematically interconnected layers, each designed to enhance transparency and 

interpretability throughout the data pipeline. Figure 1: Explainable Data Engineering (XDE) 

Pipeline: From Raw Data to Transparent AI Outputs visually represents the sequential flow 

from raw data ingestion to the generation of interpretable outputs for stakeholders. 

The first layer, Explainable Ingestion, focuses on the acquisition of data along with rich 

metadata annotations that capture source descriptions, reliability scores, and contextual details. 

This approach enables stakeholders to evaluate not just the origin of data, but also its 

trustworthiness and relevance. Additionally, automated data profiling tools are employed to 

generate visual summaries of distributions, missing values, and anomalies, facilitating 

immediate insights into potential data quality issues. 

The second layer, Transparent Preprocessing, ensures that every data transformation—such as 

normalization, imputation, or outlier handling—is accompanied by well-documented 

justifications. For example, the removal of outliers might be based on statistically defined 

thresholds like 1.5 times the interquartile range, and this rationale is explicitly recorded for 

traceability. Moreover, this stage incorporates causal traceability, allowing practitioners to 

evaluate the downstream effects of preprocessing decisions on model targets and feature 

distributions. 

The third layer, Interpretable Feature Engineering, emphasizes the transformation of raw 

attributes into meaningful features through explainable mechanisms. It utilizes transformation 

graphs and symbolic representations (e.g., logical rules, mathematical expressions) to visualize 

and document the engineering logic. Further, feature attribution trees are used to trace the 
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origin and contribution of each derived feature, providing a clear lineage from raw input to 

final model-ready representation. 

The fourth layer, Causal-Aware Pipeline Validation, introduces formal validation techniques 

grounded in causal inference. Tools such as do-calculus are applied to verify whether 

engineered features preserve or distort original causal structures within the dataset. 

Simultaneously, bias audits are conducted at each transformation stage to identify and mitigate 

risks related to data drift, spurious correlations, or unintended biases—ensuring fairness and 

robustness in downstream AI applications. 

The final layer, Explainability Interface for Stakeholders, is dedicated to communicating the 

entire pipeline's processes in an intuitive and accessible manner. This is achieved through 

interactive dashboards that display flow diagrams, decision rationales, and anomaly alerts. In 

addition, advanced natural language generation tools, such as large language models (LLMs), 

are leveraged to produce narrative summaries that translate complex transformation logic into 

plain-language explanations. This interface bridges the gap between technical developers and 

non-technical users—such as business executives, compliance officers, and domain experts—

ensuring that every stakeholder can understand how the data has been prepared and why 

specific decisions were made. 

Collectively, these five layers form a robust and transparent data engineering pipeline that 

aligns with the principles of Explainable Artificial Intelligence (XAI). By applying 

explainability not just to model outputs but to the entire data preparation process, the XDE 

framework fosters accountability, trust, and collaboration across AI development ecosystems. 
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4. Results and Analysis 

To evaluate the effectiveness of the proposed Explainable Data Engineering (XDE) framework, 

we conducted experiments on two real-world datasets: a breast cancer diagnosis dataset and a 

financial credit scoring dataset. 

In the healthcare domain, the complete XDE pipeline was implemented to examine its capacity 

to elucidate feature transformations and preprocessing steps. By integrating SHAP values with 

feature lineage graphs, we successfully explained 98% of the model's predictions in terms of 

underlying data transformations (see Figure 2: Feature Importance via SHAP - Breast Cancer 

Dataset and Figure 3: Feature Lineage Graph - Breast Cancer Dataset). Despite incorporating 

additional explainability layers, the classification accuracy remained robust at 93.5%, which is 

only marginally lower than the 93.8% accuracy achieved by a traditional opaque pipeline 

(Figure 4: Accuracy Comparison on Breast Cancer Dataset). Importantly, feedback collected 

from medical experts indicated a significant increase in trust and comprehension of the model’s 

decisions, with an average explanation clarity rating of 4.7 out of 5 on a Likert scale (Figure 5: 

Expert Trust in Explanation Clarity). 

For the financial credit scoring use case, the XDE framework proved valuable in identifying 

data drifts and anomalies that conventional approaches failed to detect. For instance, drift 

detection mechanisms alerted analysts to distortions in credit history transformations, which 

were found to introduce seasonality artifacts. Addressing these issues led to a notable 12% 

reduction in false loan approvals (Figure 6: Finance Use Case - False Approvals and Debugging 

Time). Additionally, compliance officers leveraged the narrative explanations generated by the 

XDE pipeline to justify data preprocessing decisions during internal audits. While the 

introduction of the XDE pipeline extended the time-to-deployment by approximately 8%, it 

significantly decreased downstream debugging efforts by 35%, underscoring long-term 

benefits in maintainability and stakeholder confidence. 
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Overall, a comparative evaluation showed that the XDE pipeline achieved high levels of 

transparency, audit readiness, and debugging efficiency without sacrificing model 

performance. These findings suggest that explainable data pipelines are both feasible and 

beneficial in real-world AI deployments. 
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5. Conclusion 

This paper introduced Explainable Data Engineering (XDE), a new paradigm that brings 

transparency, accountability, and interpretability to the data pipelines that fuel AI systems. By 

incorporating explainability tools at every stage—from ingestion and preprocessing to feature 

engineering and validation—XDE ensures that AI systems are not only accurate but also 

understandable and trustworthy. Our results demonstrate that embedding explainability in data 

pipelines can improve stakeholder confidence, reduce debugging effort, and support regulatory 

compliance, all while maintaining high model performance. As AI continues to expand into 

critical domains, explainable data engineering will be essential to ensure ethical and 

responsible AI adoption. Future research will focus on extending this framework to real-time 

applications, integrating it with federated learning architectures, and automating explanation 

generation for multi-modal datasets. With XDE, we take a significant step toward building AI 

systems that are not only intelligent but also transparent by design. 
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